
Forking, Pull
Requests,
Workflows and
Rebasing
Jonathan Miedel
Alvin Wang
Shannon Lee

Last Week on Git
● Git tools

○ Specifically Merge Tools
● git gc
● git clean
● git stash

Review

● What are two major categories of merge
tool?

● Name your favorite merge tool.
● What does git stash do?

Forking

● not an actual git command
● higher level concept implemented on GitHub and other

repository hosting services
○ copies the repo on the server as a new repo under

your username
● What limitation of Git makes forking a necessary step

in many workflows (think back to our discussion on
centralized version control systems)?

Problems with git merge

● creates complex tree structures
● merge commits
● lose effective commit history when merging

branches

Rebasing

● git rebase
● Serves as another way to integrate changes

from one branch to another
● Do not rebase public commits
● Replays the commits of one branch on

another

Usage

● first argument is the branch you rebase
onto

● the second is the branch you are rebasing

Rebase Diagrams

Rebase Diagrams

Rebase Workflow

1. git checkout <topic branch>
2. git rebase <target branch to replay onto>
3. git checkout <target branch>
4. git merge <topic branch>

Nice Video for Merge and Rebase

https://www.youtube.com/watch?v=Ypi4Kwx0GJw

Warning: has mario sound effects!

https://www.youtube.com/watch?v=Ypi4Kwx0GJw
https://www.youtube.com/watch?v=Ypi4Kwx0GJw

Useful Rebase Options

● --onto moves current branch to branch off
of the argument after onto
○ does not have to be a descendant

● --continue finishes a rebase after resolving
merge conflicts

● --abort aborts current rebase
● -i interactive (shown in detail in lecture 3)

Rebase Diagrams

git rebase vs git merge

Rebase
● linearizes history
● keeps commits clear
Merge
● does not modify history

git pull

● git pull = git fetch && git merge
● configure git pull to rebase automatically
● git config branch.autosetuprebase always
● git config branch.*branch-name*.rebase true

Git Workflows

● Many different ways to use git in a team
● There are general guidelines that people

follow that allow for easy debugging,
working efficiency, quality assurance,
continual testing

Git Workflow Scenarios

● Working alone
● Working on a small team of trusted

members
● Working on a large team where stability and

availability are crucial
● Working on a project with untrusted

contributors

Working Alone

● It is up to you what workflow model to use
● feature-based Branch model still the best

○ create branches off of master, do development,
rebase them back into master

● Pull requests not necessary
● More freedom with rewriting history (can

squash and rebase whenever you want)
● It is easy to keep a linear history

Working with a small, trusted team

● Everyone has write access
● pull requests not necessary
● use branching model
● “private” and “public” branches
● public branches examples are master and release

branches, all commits should be clear and meaningful
● private/local branches can be thought of as scratch

paper. Being local affords you the advantage of being
able to squash and edit commit history.

Working on a large team with stability and
availability

● Will utilize branching or forking using a pull request model
● Developers will have their own branches to do development

and have to open pull requests to merge into master.
● Often utilizes Continuous Integration to prevent bad

commits from being accepting into master
● use rebase to keep master linear and to keep his history

intact
● rebase your topic branch onto origin/master
● pull request topic branch into master

Working with unknown, untrusted
contributors

● Used in open source projects where the
quality of contributors is not always known

● Git’s permission levels are very binary in
that you either have write access to all the
branches or to none of them

● A contributor must fork to their own repo,

git rm

● removes a file from the branch and from
the index but does not modify working
directory.

● --cached keeps it in your working directory
● only works if file is identical to branch tip

Next Week in Git Stuco

● Midterm

HW

Short HW on rebasing; released on today
Due next week by Wednesday 11:59PM

Midterm

● Midterm will cover everything so far,
including basic material relating to rebase

● It will focus a lot on concepts we have
learned, not just on the commands.

● Format: multiple-choice, short answer and
3 fun activities

List of Commands Covered in Detail

● git clone
● git add
● git commit
● git push
● git status
● git log

Continued

● git checkout
● git reset
● git merge
● git branch
● git pull
● git init

More Command with Less Detail

● git rm
● git stash
● git clean
● git gc
● git remote

Continued

● git tag
● git blame
● git diff

Important High Level

● Point of VCS
● Advantages of distributed/centralized
● Point of branching
● Difference between rebase and merge
● Merge conflicts
● Be able to define index, repository, branch,

head, master, remote, origin, and working
directory

Continued

● Feature based commits
● Hashes
● Change Sets vs Snapshots
● Function of .gitignore
● Difference between checkout and reset

