Forking, Pull
Requests,

Workflows and
Rebasing

Jonathan Miedel
Alvin Wang
Shannon Lee



Last Week on Git

e (it tools
o Specifically Merge Tools

@ git gcC

e git clean

e git stash



Review

e What are two major categories of merge
tool?

e Name your favorite merge tool.

e What does git stash do?



Forking

e not an actual git command
e higher level concept implemented on GitHub and other
repository hosting services

o copies the repo on the server as a new repo under
your username
e What limitation of Git makes forking a necessary step
in many workflows (think back to our discussion on
centralized version control systems)?



Problems with git merge

e creates complex tree structures

e merge commits

e lose effective commit history when merging
branches



Rebasing

@ git rebase

e Serves as another way to integrate changes
from one branch to another

e Do not rebase public commits

e Replays the commits of one branch on
another



Usage

e first argument is the branch you rebase
onto
e the second is the branch you are rebasing



Rebase Diagrams

experiment

P

co - C1 -« C2 -+ C3

master

=
Yy v




Rebase Diagrams

:

Cco --— C1 - C2 -« Cc3 - c4'

=
Yy v




Rebase Workflow

D OWN -

git checkout <topic branch>

git rebase <target branch to replay onto>
git checkout <target branch>

git merge <topic branch>



Nice Video for Merge and Rebase

https://www.youtube.com/watch?v=Ypi4dKwx0GJw

Warning: has mario sound effects!


https://www.youtube.com/watch?v=Ypi4Kwx0GJw
https://www.youtube.com/watch?v=Ypi4Kwx0GJw

Useful Rebase Options

e --onto moves current branch to branch off

of the argument after onto
o does not have to be a descendant

e --continue finishes a rebase after resolving
merge conflicts

e --abort aborts current rebase

e -i interactive (shown in detail in lecture 3)



added file 9.txt
added 8.txt

addedfile 7
fixed repeated lineinfile 5
added a whole new line
made a feature infile 5

Rebase Diagrams

addedfile 7
added file 9.txt
added 8.t

ma;er clI;nt
@4—( Cc2 H cs )ﬂ—( Ccé6 )4—'( ce' H co' )

server

<

addedfile 7
fixed repeated lineinfile 5
added a whole new line
made afeature infile 5
bua fixto file 5




git rebase vs git merge

Rebase

e linearizes history
e keeps commits clear

Merge
e does not modify history



git pull

e git pull = git fetch && git merge

e configure git pull to rebase automatically
o

o

git config branch.autosetuprebase always
git config branch.x*branch-name*.rebase true



Git Workflows

e Many different ways to use git in a team
e There are general guidelines that people
follow that allow for easy debugging,
working efficiency, quality assurance,

continual testing



Git Workflow Scenarios

e Working alone

e Working on a small team of trusted
members

e Working on a large team where stability and
availability are crucial

e Working on a project with untrusted
contributors



Working Alone

e [t is up to you what workflow model to use
e feature-based Branch model still the best

o create branches off of master, do development,
rebase them back into master

e Pull requests not necessary

e More freedom with rewriting history (can
squash and rebase whenever you want)

e |t is easy to keep a linear history



Working with a small, trusted team

Everyone has write access

pull requests not necessary

use branching model

“private” and “public” branches

public branches examples are master and release
branches, all commits should be clear and meaningful
private/local branches can be thought of as scratch
paper. Being local affords you the advantage of being
able to squash and edit commit history.



Working on a large team with stability and
availability

e Will utilize branching or forking using a pull request model

e Developers will have their own branches to do development
and have to open pull requests to merge into master.

e Often utilizes Continuous Integration to prevent bad
commits from being accepting into master

e use rebase to keep master linear and to keep his history
intact

e rebase your topic branch onto origin/master

e pull request topic branch into master



Working with unknown, untrusted
contributors

e Used in open source projects where the
quality of contributors is not always known

e Git’s permission levels are very binary in
that you either have write access to all the
branches or to none of them

e A contributor must fork to their own repo,



git rm

e removes a file from the branch and from
the index but does not modify working
directory.

e --cached keeps it in your working directory

e only works if file is identical to branch tip



Next Week in Git Stuco

e Midterm

Yy v



HW

Short HW on rebasing; released on today
Due next week by Wednesday 11:59PM



Midterm

e Midterm will cover everything so far,
including basic material relating to rebase

e [t will focus a lot on concepts we have
learned, not just on the commands.

e Format: multiple-choice, short answer and
3 fun activities



List of Commands Covered in Detail

git clone
git add

git commit
git push
git status
git log



Continued

git checkout
git reset

git merge
git branch
git pull

git init



More Command with Less Detail

git rm

git stash
git clean
git gc

git remote



Continued

e git tag
e git blame
o git diff




Important High Level

Point of VCS

Advantages of distributed/centralized

Point of branching

Difference between rebase and merge
Merge conflicts

Be able to define index, repository, branch,
head, master, remote, origin, and working
directory



Continued

Feature based commits

Hashes

Change Sets vs Snapshots

Function of .gitignore

Difference between checkout and reset



