
Branching and Merging
by Shannon Lee, Jonathan Miedel, and Alvin 
Wang



Last Time on Git
● git pull
● git checkout
● git reset
● git blame
● rebase interactive



Pop Quiz!
1. What is git pull used for?
2. What is the index?
3. Explain the difference between git reset --soft, --mixed, and --hard?
4. What are HEAD and master?
5. What is the difference between git reset <file> and git reset 

<commit>?
6. Name a use and danger for git rebase interactive.
7. What is git checkout for?
8. How are commits identified in git?
9. How do you reconcile a detached HEAD?



What is a branch?
● A branch is essentially a pointer to a commit in your git 

history
● master is the default branch
● Creating a branch is as simple as creating a new pointer 

to a commit in Git



An Example from Pro Git



Git Branch
git branch - shows local branches; -a will show all
git branch <branch> - creates a branch off of HEAD
git status - this will tell you what branch you are currently 
on
git remote show origin - a lot of useful information about 
which branches are tracked and which need updates



Branching is Good
Pros:
● Allows for more isolation in workflow
● Allows for feature-based development

Cons:
● More confusing
● commit history get more convoluted
● hotfixes / security leaks are not applied immediately



Branch Naming Conventions
● Short
● Descriptive
● Separated by “/”’s
● Examples

○ tooltip/positioningFix
○ parallax/responsiveFix



Example Branch Workflow



Deleting Branches
● git branch -d <branchname>



Git Checkout (again)
● git checkout 

○ git checkout <branch>
■ checks out a branch

○ git checkout -b <branch>
■ creates a new branch and moves you to it



Merging
● It serves to integrate a branched tree back into a single 

tree
● Two main algorithms in Git

○ Fast-Forward
■ used by default if the branches have not diverged

○ 3-Way merge
■ uses diff3 to create the merge-commits we saw 

last time. 3-way refers to local, remote, common-
ancestor



The Two Algorithms



Git Merge
● git merge <branch>
● --no-ff
● --no-commit



Merge Conflicts
● Merge conflicts occur when the process of merging does 

not go smoothly
○ Often happens if two people edit the same line

● Git will mark the file where the conflict occurred
○ You can resolve these manually
○ A wide variety of tools can be used to assist (next 

week)



Merge Demo



Pushing Branches to Remote
● simple (default in git 2.0)

○ pushes only the current branch
● matching

○ pushes all local branches if they already are tracked 
on remote

● git config --global push.default matching



Deleting remote branches
● git push origin --delete <branch>



Deleting Remote Branch Demo



Fork
● GitHub feature
● Creates a copy of a repository in your own space
● Useful if you wish to contribute to repositories you do 

not have permissions for
● Also useful if using a repository as a base for a project



Forking Demo



Homework
● fork HW3 under your account
● clone it
● on master branch, reset back to the second commit so that the changes from the 

latest 3 commits are kept in your index.
● create a new branch called “HWBranch” and switch to it
● commit your index to the new branch with the message “readded changes”
● merge newFeature branch into the branch you just created successfully using git 

merge origin/newFeature; make sure you are on HWBranch when doing so
● You will get a conflict, resolve them manually by taking the changes from newFeature 

branch, commit after you resolve the conflicts with the message, “fixed merge 
conflicts”

● push only the HWBranch to your repo
● Once you are done, create an issue on Github on the Git-Stuco/HW3 repo with your 

andrewid as the title and a URL link to your forked repo as the body of the issue.



Complete HW git log



Next Week in Git
● More advanced merge conflict resolution
● Tools to aid in the merge process



Extra Topics
SSH git
git gc


